8 The Plane Separation Axiom

(8.1) Definition (convex set of points)

Let $\{\mathcal{S}, \mathcal{L}, d\}$ be a metric geometry and let $\mathcal{S}_{1} \subseteq \mathcal{S}$. \mathcal{S}_{1} is said to be convex if for every two points $P, Q \in \mathcal{S}$, the segment $\overline{P Q}$ is a subset of \mathcal{S}_{1}.

1. If \mathcal{S}_{1} and \mathcal{S}_{2} are convex subsets of a metric geometry, prove that $\mathcal{S}_{1} \cap \mathcal{S}_{2}$ is convex.
2. If ℓ is a line in a metric geometry, prove that ℓ is convex.
3. Consider the set of ordered pairs (x, y) with $(x-1)^{2}+y^{2}=9,0<x<4$ and $0<y$. Explain is this set (and when it is) convex.

(8.2) Definition (plane separation axiom (PSA), half planes)

A metric geometry $\{\mathcal{S}, \mathcal{L}, d\}$ satisfies the plane separation axiom (PSA) if for every $\ell \in \mathcal{L}$ there are two subsets H_{1} and H_{2} of \mathcal{S} (called half planes determined by ℓ) such that
(i) $\mathcal{S}-\ell=H_{1} \cup H_{2}$;
(ii) H_{1} and H_{2} are disjoint and each is convex;
(iii) If $A \in H_{1}$ and $B \in H_{2}$ then $\overline{A B} \cap \ell \neq \emptyset$.

(8.3) Theorem

Let ℓ be a line in a metric geometry. If both H_{1}, H_{2} and $H_{1}^{\prime}, H_{2}^{\prime}$ satisfy the conditions of PSA for the line ℓ then either $H_{1}=H_{1}^{\prime}\left(\right.$ and $\left.H_{2}=H_{2}^{\prime}\right)$ or $H_{1}=H_{2}^{\prime}\left(\right.$ and $\left.H_{2}=H_{1}^{\prime}\right)$.

(8.4) Definition (lie on the same side, lie on opposite sides, side that contains)

Let $\{\mathcal{S}, \mathcal{L}, d\}$ be a metric geometry which satisfies PSA, let $\ell \in \mathcal{L}$, and let H_{1} and H_{2} be the half planes determined by ℓ. Two points A and B lie on the same side of ℓ if they both belong to H_{1} or both belong to H_{2}. Points A and B lie on opposite sides of ℓ if one belongs to H_{1} and one belongs to H_{2}. If $A \in H_{1}$, we say that H_{1} is the side of ℓ that contains A.

(8.5) Theorem

Let $\{\mathcal{S}, \mathcal{L}, d\}$ be a metric geometry which satisfies PSA. Let A and B be two points of \mathcal{S} not on a given line ℓ. Then
(i) A and B are on opposite sides of ℓ if and only if $\overline{A B} \cap \ell \neq \emptyset$.
(ii) A and B are on the same side of ℓ if and only if either $A=B$ or $\overline{A B} \cap \ell=\emptyset$.
4. Prove the Theorems 8.3, 8.5 and 8.6.
5. Let ℓ be a line in a metric geometry which satisfies PSA. If P and Q are on opposite sides of ℓ and if Q and R are on opposite sides of ℓ then P and R are on the same side of ℓ.
6. Let ℓ be a line in a metric geometry which satisfies PSA. If P and Q are on opposite sides of ℓ and if Q and R are on the same side of ℓ then P and R are on opposite sides of ℓ.

(8.6) Theorem

Let ℓ be a line in a metric geometry with

PSA. Assume that H_{1} is a half plane determined by the line ℓ. If H_{1} is also a half plane determined by the line ℓ^{\prime}, then $\ell=\ell^{\prime}$.

(8.7) Definition (edge)

If H_{1} is a half plane determined by the line ℓ, then the edge of H_{1} is ℓ.
7. Determine are the statements true or false:
(a) If A, B are points, then $\overline{A B}$ is a convex set.
(b) If A, B are points, then $\{A, B\}$ is a convex set.
(c) The intersection of two convex sets is a convex set. (d) The union of two convex sets is a convex set. (e) $\overline{B C}=\overleftrightarrow{B C} \cap \triangle A B C$.
8. Let ℓ be a line in a metric geometry $\{\mathcal{S}, \mathcal{L}, d\}$ which satisfies PSA. We write $P \sim Q$ if P and Q are on the same side of ℓ. Prove that \sim is an equivalence relation on $\mathcal{S}-\ell$. How many equivalence classes are there and what are they?
9. Consider the distance function d_{N} defined on the Euclidean plane as follows: Let every line other than L_{0} have the usual Euclidean ruler,
and for the line L_{0}, let the ruler be $f: L_{0} \rightarrow \mathbb{R}$ where

$$
f((0, y))=\left\{\begin{aligned}
y, & \text { if } y \text { is not an integer } \\
-y, & \text { if } y \text { is an integer }
\end{aligned}\right.
$$

(You may assume that this function is a ruler.)
(a) Show that $\left\{(0, y) \left\lvert\, \frac{1}{2} \leq y \leq \frac{3}{2}\right.\right\}$ is a convex set in $\left(\mathbb{R}^{2}, \mathcal{L}_{E}, d_{E}\right)$, the Euclidean plane with the
usual Euclidean distance, but not in $\left(\mathbb{R}^{2}, \mathcal{L}_{E}, d_{N}\right)$, the Euclidean plane with the new distance.
(b) Find the line segment from ($0, \frac{1}{2}$) to $\left(0, \frac{3}{2}\right)$ in $\left(\mathbb{R}^{2}, \mathcal{L}_{E}, d_{N}\right)$. Show that it is a convex set in $\left(\mathbb{R}^{2}, \mathcal{L}_{E}, d_{N}\right)$ but not in $\left(\mathbb{R}^{2}, \mathcal{L}_{E}, d_{E}\right)$.
(c) Show that $\left(\mathbb{R}^{2}, \mathcal{L}_{E}, d_{N}\right)$, the Euclidean plane with this new distance d_{N}, does not satisfy PSA, the Plane Separation Axiom.

9 PSA for the Euclidean and Poincaré Planes

Notation (X^{\perp} or X perp) If $X=(x, y) \in \mathbb{R}^{2}$ then $X^{\perp}\left(\right.$ read " X perp") is the element $X^{\perp}=(-y, x) \in \mathbb{R}^{2}$.
(9.1) Lemma
(i) If $X \in \mathbb{R}^{2}$ then $\left\langle X, X^{\perp}\right\rangle=0$.
(9.2) Proposition

If P and Q are distinct points in \mathbb{R}^{2} then
(ii) If $X \in \mathbb{R}^{2}$ and $X \neq(0,0)$ then $\left\langle Z, X^{\perp}\right\rangle=0$ implies that $Z=t X$ for some $t \in \mathbb{R}$.

$$
\overleftrightarrow{P Q}=\left\{A \in \mathbb{R}^{2} \mid\left\langle A-P,(Q-P)^{\perp}=0\right\}\right.
$$

(9.3) Definition (Euclidean half planes)

Let $\ell=\overleftrightarrow{P Q}$ be a Euclidean line. The Euclidean half planes determined by ℓ are

$$
\begin{aligned}
& H^{+}=\left\{A \in \mathbb{R}^{2} \mid\left\langle A-P,(Q-P)^{\perp}\right\rangle>0\right\} . \\
& H^{-}=\left\{A \in \mathbb{R}^{2} \mid\left\langle A-P,(Q-P)^{\perp}\right\rangle<0\right\} .
\end{aligned}
$$

(9.4) Proposition

The Euclidean half planes determined by $\ell=\overleftrightarrow{P Q}$ are convex

(9.5) Proposition

The Euclidean Plane satisfies PSA.

(9.6) Definition (Poincaré half planes)

If $\ell={ }_{a} L$ is a type I line in the Poincaré Plane then the Poincaré half planes determined by ℓ are

$$
\begin{equation*}
H_{+}=\{(x, y) \in \mathbb{H} \mid x>a\}, \quad H_{-}=\{(x, y) \in \mathbb{H} \mid x<a\} . \tag{2}
\end{equation*}
$$

If $\ell={ }_{c} L_{r}$, is a type II line then the Poincaré half planes determine by ℓ are

$$
H_{+}=\left\{(x, y) \in \mathbb{H} \mid(x-c)^{2}+y^{2}>r^{2}\right\}, \quad H_{-}=\left\{(x, y) \in \mathbb{H} \mid(x-c)^{2}+y^{2}<r^{2}\right\} .
$$

(9.7) Proposition

The Poincaré Plane satisfies PSA.

1. Prove the Lemma 9.1 and Propositions 9.2, 9.4, 9.5 and 9.7.
2. Prove that the Euclidean half plane H^{-}is convex.
3. Let ℓ be a line in the Euclidean Plane and suppose that $A \in H^{+}$and $B \in H^{-}$. Show that $\overline{A B} \cap \ell \neq \emptyset$ in the following way. Let $g(t)=\left\langle A+t(B-A)-P,(Q-P)^{\perp}\right\rangle$ if $t \in \mathbb{R}$. Evaluate $g(0)$ and $g(1)$, show that g is
continuous, and then prove that $\overline{A B} \cap \ell \neq \emptyset$.
4. If $\ell={ }_{a} L$ is a type I line in the Poincaré Plane then prove that
a. H_{+}and H_{-}as defined in Equation (2) are convex.
b. If $A \in H_{+}$and $B \in H_{-}$then $\overline{A B} \cap \ell \neq \emptyset$.
5. For the Taxicab Plane $\left(\mathbb{R}^{2}, \mathcal{L}_{E}, d_{T}\right)$ prove that
a. If $A=\left(x_{1}, y_{1}\right), B=\left(x_{2}, y_{2}\right)$ and $C=\left(x_{3}, y_{3}\right)$ are collinear but do not lie on a vertical line then $A-B-C$ if and only if $x_{1} * x_{2} * x_{3}$.
b. The Taxicab Plane satisfies PSA.
